
CHAPTER-5 EIGENVALUES AND EIGENVECTORS 

EIGENVALUES OR CHARACTERISTIC ROOTS: The eigenvalues of an 𝑛 × 𝑛 matrix 

𝐴 are the solutions of Characteristic Equation 

det(𝜆𝐼 − 𝐴) = 0. 

Example. Find the eigenvalues of the matrix 𝐴 = [
5 −2
3 0

]. 

Solution: The characteristic equation of the matrix 𝐴 is given by 

det(𝜆𝐼 − 𝐴) = 0 

det (𝜆 [
1 0
0 1

] − [
5 −2
3 0

]) = 0 

|
𝜆 − 5 2
−3 𝜆

| = 0 

𝑖. 𝑒., 𝜆(𝜆 − 5) + 6 = 0  

          𝑖. 𝑒., 𝜆2 − 5𝜆 + 6 = 0   (Characteristic Equation) 

𝑖. 𝑒. , (𝜆 − 2)(𝜆 − 3) = 0 

𝑖. 𝑒. , 𝜆 = 2, 3 

Hence, the eigenvalues (or characteristic roots) of matrix 𝐴 are 2 & 3. 

 

NOTE (1) The characteristic equation of an 𝑛 × 𝑛 matrix is of degree ‘𝑛′ and so an 𝑛 × 𝑛 

matrix has at most ′𝑛′ distinct eigenvalues. 

NOTE (2) The sum of eigenvalues of a square matrix is equal to its Trace and the product of 

eigenvalues of a square matrix is equal to its Determinant i.e., 

If 𝜆1, 𝜆2, 𝜆3, ……… . , 𝜆𝑛 are the eigenvalues of a square matrix A, then 

𝜆1 + 𝜆2 + 𝜆3 + ⋯…… .+𝜆𝑛 = 𝑇𝑟𝑎𝑐𝑒(𝐴)  

And  (𝜆1)( 𝜆2)( 𝜆3)……… . (𝜆𝑛) = |𝐴| 

 

THEOREM: If ‘A’ is 𝑛 × 𝑛 triangular matrix (upper triangular, lower triangular or diagonal), 

then the eigenvalues of matrix ‘A’ are just the entries on the main diagonal of ‘A’. 

 

 

 

 

 

 



EIGENVECTORS: The eigenvectors corresponding to an eigenvalue 𝜆 of a matrix 𝐴 are the 

non-zero vectors that satisfy the equation  (𝜆𝐼 − 𝐴)𝑋 = 0. 

Example: Find the eigenvalues and corresponding eigenvectors of the matrix 𝐴 = [
5 −2
3 0

]. 

Solution: The characteristic equation of the matrix 𝐴 is given by 

det(𝜆𝐼 − 𝐴) = 0 

det (𝜆 [
1 0
0 1

] − [
5 −2
3 0

]) = 0 

|
𝜆 − 5 2
−3 𝜆

| = 0 

𝑖. 𝑒. , 𝜆(𝜆 − 5) + 6 = 0 

      𝑖. 𝑒. , 𝜆2 − 5𝜆 + 6 = 0  (Characteristic Equation) 

𝑖. 𝑒. , (𝜆 − 2)(𝜆 − 3) = 0 

𝑖. 𝑒. , 𝜆 = 2, 3 

The eigenvalues (or characteristic roots) of matrix 𝐴 are 2 & 3. 

The eigenvector corresponding to eigenvalue 𝜆 = 2 is the non-trivial solution of the equ. 

(𝜆𝐼 − 𝐴)𝑋 = 𝟎 

𝑖. 𝑒. , (2 [
1 0
0 1

] − [
5 −2
3 0

]) [
𝑥1

𝑥2
] = [

0
0
] 

                           𝑖. 𝑒. , [
−3 2
−3 2

] [
𝑥1

𝑥2
] = [

0
0
] 

Which gives    3𝑥1 − 2𝑥2 = 0 ……………….(1) 

Let 𝑥2 = 𝑡, then from (1)   3𝑥1 − 2𝑡 = 0 

𝑖. 𝑒. , 𝑥1 =
2

3
𝑡 

Thus, the eigenvector corresponding to 𝜆 = 2 is 

𝑋1 = [
𝑥1

𝑥2
] = [

2𝑡

3
𝑡

] = 𝑡 [
2

3
1

]. 

Similarly, we can find the Eigenvector corresponding to the eigenvalue 𝜆 = 3. 

 



THEOREM: If k is a positive number, 𝜆 is an eigenvalue of a matrix ‘A’ and X is 

corresponding eigenvector, then 𝜆𝑘 is an eigenvalue of 𝐴𝑘 and X is a corresp. eigenvector. 

THEOREM: A square matrix 𝐴 is Invertible iff 𝜆 = 0 is not an eigenvalue of 𝐴. 

 

SIMILAR MATRICES: If ‘A’ and ‘B’ are square matrices, then we say that ‘B’ is similar to 

‘A’ if there is an invertible matrix P such that 𝐵 = 𝑃−1𝐴𝑃. 

NOTE: The similar matrices ‘A’ and 𝑃−1𝐴𝑃 have same determinant, same rank, same nullity, 

same trace, same characteristic polynomial and same eigenvalues. 

 

DIAGONALIZABLE: A square matrix ‘A’ is said to be Diagonalizable if it similar to some 

diagonal matrix; that is, if there is an invertible matrix ‘P’ such that 𝑃−1𝐴𝑃 is diagonal. In this 

case, the matrix ‘P’ is said to diagonalize matrix ‘A’. 

THEOREM: If ‘A’ is an 𝑛 × 𝑛 matrix, the following statements are equivalent- 

(i) Matrix ‘A’ is diagonalizable. 

(ii) Matrix ‘A’ has ‘n’ linearly independent eigenvectors. 

THEOREM: If an 𝑛 × 𝑛 matrix ‘A’ has ‘n’ distinct eigenvalues (the eigenvectors of ‘A’ are 

linearly independent), then matrix ‘A’ is Diagonalizable. 

NOTE (1) A triangular matrix with distinct entries on main diagonal is Diagonalizable. 

 

REVIEW OF COMPLEX NUMBERS: If 𝑧 = 𝑎 + 𝑖𝑏 is a complex number, then 

(i) 𝑅𝑒(𝑧) = 𝑎 and 𝐼𝑚(𝑧) = 𝑏 are called Real Part & Imaginary Part of z respectively. 

(ii) |𝑧| = √𝑎2 + 𝑏2 is called the modulus (or absolute value) of 𝑧. 

(iii) 𝑧̅ = 𝑎 − 𝑖𝑏 is called the complex conjugate of 𝑧. 

(iv) 𝑧𝑧̅ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) 

= 𝑎2 + 𝑏2 = |𝑧|2  

Where i , called ‘iota’ has the property 𝑖2 = −1 or 𝑖 = √−1. 

NOTE (1) Every vector in 𝐶𝑛 can be split into Real & Imaginary parts as- 

𝑣 = (𝑎1 + 𝑖𝑏1, 𝑎2 + 𝑖𝑏2, ……… , 𝑎𝑛 + 𝑖𝑏𝑛) = (𝑎1, 𝑎2, ……𝑎𝑛) + 𝑖(𝑏1, 𝑏2, …… . , 𝑏𝑛) 

&    𝑣̅ = (𝑎1 − 𝑖𝑏1, 𝑎2 − 𝑖𝑏2, ……… , 𝑎𝑛 − 𝑖𝑏𝑛) = (𝑎1, 𝑎2, ……𝑎𝑛) − 𝑖(𝑏1, 𝑏2, …… . , 𝑏𝑛) 

NOTE (2) If ‘A’ is a complex matrix, then Re(A) and Im(A) are the matrices formed from the 

real and imaginary parts of the entries of ‘A’ and 

‘𝐴̅’ is the matrix formed by taking complex conjugate of each entry in ‘A’. 

 

 



Example: For the matrix 𝐴 = [
1 + 3𝑖 2
3 + 𝑖 4 − 𝑖

], find 𝐴̅, 𝑅𝑒(𝐴), 𝐼𝑚(𝐴), 𝑇𝑟(𝐴) & det (𝐴). 

Solution: 𝐴̅ = [
1 − 3𝑖 2
3 − 𝑖 4 + 𝑖

]   

𝑅𝑒(𝐴) = [
1 2
3 4

] 

𝐼𝑚(𝐴) = [
3 0
1 −1

] 

𝑇𝑟(𝐴) = 1 + 3𝑖 + 4 − 𝑖 = 5 + 2𝑖 

det(𝐴) = (1 + 3𝑖)(4 − 𝑖) − 2(3 + 𝑖) 

= 4 − 𝑖 + 12𝑖 − 3𝑖2 − 6 − 2𝑖 

= −2 + 9𝑖 − 3(−1) = 1 + 9𝑖  (∵  𝑖2 = −1) 

 

THEOREM: If u & v are vectors in 𝐶𝑛 and if k is a scalar, then 

(i) (𝑢̅)̅̅ ̅̅ = 𝑢 

(ii) (𝑘𝑢)̅̅ ̅̅ ̅̅ = 𝑘̅𝑢̅ 

(iii) (𝑢 + 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑢̅ + 𝑣̅ 

THEOREM: If ‘A’ is an 𝑚 × 𝑘 complex matrix and ‘B’ is a 𝑘 × 𝑛 complex matrix, then 

(i) (𝐴̅)̅̅ ̅̅̅ = 𝐴 

(ii) (𝐴𝑇)̅̅ ̅̅ ̅̅ = (𝐴̅)𝑇 

(iii) (𝐴𝐵)̅̅ ̅̅ ̅̅ ̅ = 𝐵̅𝐴̅ 

 

COMPLEX EUCLIDEAN INNER PRODUCT: If 𝑢 = (𝑢1, 𝑢2, …… . . , 𝑢𝑛) and              

𝑣 = (𝑣1, 𝑣2, …… . . , 𝑣𝑛) are vectors in 𝐶𝑛, then 

𝑢. 𝑣 = 𝑢1𝑣1̅̅ ̅ + 𝑢2𝑣2̅̅ ̅ + ⋯……+ 𝑢𝑛𝑣𝑛̅̅ ̅ 

Euclidean Norm on 𝐶𝑛 is defined as  ‖𝑢‖ = √𝑢. 𝑢 = √𝑢1𝑣1̅̅ ̅ + 𝑢2𝑣2̅̅ ̅ + ⋯……+ 𝑢𝑛𝑣𝑛̅̅ ̅ 

A vector 𝑢 is called a Unit Vector in 𝐶𝑛 if  ‖𝑢‖ = 1. 

And two vectors 𝑢 & 𝑣 are said to be Orthogonal if 𝑢. 𝑣 = 0. 

 

 

 

 

 



Example: Find 𝑢. 𝑣, 𝑣. 𝑢, ‖𝑢‖ 𝑎𝑛𝑑 ‖𝑣‖ for vectors 𝑢 = (1 + 𝑖, 𝑖, 3 − 𝑖) & 𝑣 = (1 − 𝑖, 2, 4𝑖). 

Solution: We have 

𝑢. 𝑣 = (1 + 𝑖, 𝑖, 3 − 𝑖). (1 − 𝑖, 2, 4𝑖)  

          = (1 + 𝑖) (1 − 𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑖 (2)̅̅ ̅̅ + (3 − 𝑖) (4𝑖)̅̅ ̅̅ ̅ 

       = (1 + 𝑖)(1 + 𝑖) + 2𝑖 + (3 − 𝑖)(−4𝑖)  

       = 1 + 𝑖 + 𝑖 + 𝑖2 + 2𝑖 − 12𝑖 + 4𝑖2  

       = 1 − 8𝑖 + 5𝑖2  

       = 1 − 8𝑖 + 5(−1) = −4 − 8𝑖   

Similarly,   𝑣. 𝑢 = (1 − 𝑖, 2, 4𝑖). (1 + 𝑖, 𝑖, 3 − 𝑖) 

  = (1 − 𝑖) (1 + 𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅ + 2 (𝑖)̅̅̅̅ + (4𝑖) (3 − 𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅  

  = (1 − 𝑖)(1 − 𝑖) − 2𝑖 + 4𝑖(3 + 𝑖) = −4 + 8𝑖  (∵  𝑖2 = −1) 

‖𝑢‖ = √|1 + 𝑖|2 + |𝑖|2 + |3 − 𝑖|2  

        = √(12 + 12) + (02 + 12) + {(3)2 + (−1)2}   (∵  |𝑎 + 𝑖𝑏|2 = 𝑎2 + 𝑏2) 

        = √1 + 1 + 1 + 9 + 1 = √13  

Similarly, ‖𝑣‖ = √|1 − 𝑖|2 + |2|2 + |4𝑖|2 = √22 

 

THEOREM:  If 𝐴 is a 2 × 2 matrix with real entries, then the Characteristic Equation of 𝐴 is 

𝜆2 − [𝑡𝑟𝑎𝑐𝑒(𝐴)]𝜆 + det(𝐴) = 0. 

THEOREM: If ‘A’ is a real symmetric matrix, then ‘A’ has real eigenvalues. 

TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. Matrix 𝐶 is diagonalizable if it is similar to a diagonal matrix 𝐵; that is, there exists an 

invertible matrix 𝑃 and 𝐵 = 𝑃𝐶𝑃−1.       (T) 

2. If an 𝑛 × 𝑛 matrix 𝐴 has 𝑛 distinct eigenvalues, then 𝐴 is Diagonalizable.  (T) 

3. If 𝐴 is real symmetric matrix, then 𝐴 has complex eigenvalues.   (F) 

4. A square matrix ‘𝐴’ is Invertible iff 𝜆 = 0 is an eigenvalue of ‘𝐴’.   (F) 

5. The characteristic polynomial of 2 × 2 matrix 𝐴 is of degree 3.   (F) 

6. The product of eigenvalues of a square matrix is same as its determinant.  (T) 

7. Given that the characteristic polynomial of a matrix 𝐴 is 

𝑝(𝜆) = (𝜆 − 1)(𝜆 + 2)(𝜆 − 3)2, then det(𝐴−1) = −
1

18
.    (T) 

8. The sum of eigenvalues of a square matrix is equal to its Trace.   (T) 

9. If 0, 1, and 2 are the eigen values of a matrix 𝐴, then |𝐴| = 0.   (T) 

10. (2, 1, 3) is the imaginary part of the complex vector (2𝑖 + 2, 𝑖 + 1, 3𝑖 − 3). (T) 



OBJECTIVE QUESTIONS 
1. If ‘0’ is an eigenvalue of a square matrix ‘𝐴’ then ‘𝐴’ is- 

a) Invertible 

b) Not Invertible 

c) An Identity matrix 

d) None of above 

 

2. If {1,2,3} are the eigenvalues of a matrix, then its Trace and Determinant are- 

a) 3,3  

b) 4,4  

c) 5,5  

d) 6,6 

3. The characteristic equation of the matrix 𝐴 = [
2 5
1 2

] is 

a) 𝜆2 − 4𝜆 + 1 = 0 

b) 𝝀𝟐 − 𝟒𝝀 − 𝟏 = 𝟎 

c) 𝜆2 + 4𝜆 + 1 = 0 

d) 𝜆2 + 4𝜆 − 1 = 0 

4. The eigenvalues of the matrix 𝐴4 are, where 𝐴 = [
1 0 0
2 −2 0
3 4 3

] 

a) {1, −2, 3} 

b) {1, −16, 81} 

c) {𝟏, 𝟏𝟔, 𝟖𝟏} 

d) {1, −16,−81} 

5. The characteristic polynomial of the matrix 𝐴 = [
2 5
1 −2

] is 

a) 𝜆2 − 9 = 0 

b) 𝜆2 + 9 = 0 

c) 𝝀𝟐 − 𝟗 

d) 𝜆2 + 9 

6. The eigenvalues of a matrix, 𝐴 = [
1 0 0
2 2 0
0 3 −1

]are- 

a) {1,2,3} 

b) {1,2,2} 

c) {1,2,0} 

d) {𝟏, −𝟏, 𝟐} 

7. The sum of eigenvalues of matrix 𝐴 = [
2 4 5
1 1 0
1 3 −3

] is 

a) 6 

b) 1 

c) 0 

d) 5 

 



CHAPTER-6 INNER PRODUCT SPACE 

INNER PRODUCT: An inner product on a real vector space V is a function that associates a 

real no. < 𝑢, 𝑣 > with each pair of vectors in V in such a way that following axioms are satisfied 

(i) < 𝑢, 𝑣 > = < 𝑣, 𝑢 > 

(ii) < 𝑢 + 𝑣,𝑤 > = < 𝑢,𝑤 > +< 𝑣,𝑤 > 

(iii) < 𝑘𝑢, 𝑣 > = 𝑘 < 𝑢, 𝑣 > 

(iv) < 𝑣, 𝑣 > ≥ 0 and < 𝑣, 𝑣 > = 0 iff  𝑣 = 0. 

 

EUCLIDEAN INNER PRODUCT OR STANDARD INNER PRODUCT ON 𝑹𝒏:                  

If 𝑢 = (𝑢1, 𝑢2, …… . . , 𝑢𝑛) and 𝑣 = (𝑣1, 𝑣2, …… . . , 𝑣𝑛) are vectors in 𝑅𝑛, then 

< 𝑢, 𝑣 >= 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯……+ 𝑢𝑛𝑣𝑛 

If 𝑉 is a real inner product space, then the norm (or length) of a vector 𝑢 in 𝑉 is defined as 

‖𝑢‖ = √< 𝑢, 𝑢 > 

And the distance between two vectors u & v is defined as 

𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖ = √< 𝑢 − 𝑣, 𝑢 − 𝑣 > 

Example: If 𝑢 = (1, 0) and 𝑣 = (0, 1) are two vectors in 𝑅2 with Euclidean inner product 

 < 𝑢, 𝑣 >= 𝑢1𝑣1 + 𝑢2𝑣2. Find ‖𝑢‖ and distance between 𝑢 &  𝑣. 

Solution: We have  

‖𝑢‖ = √< 𝑢, 𝑢 > = √(1)(1) + (0)(0) = 1 

𝑑(𝑢, 𝑣) = ‖𝑢 − 𝑣‖ = ‖(1,−1)‖  

              = √< (1,−1), (1, −1) >  

        = √(1)(1) + (−1)(−1) = √2  

INNER PRODUCT ON 𝑴𝒏𝒏:  If 𝑈 and 𝑉 are 𝑛 × 𝑛 matrices , then < 𝑈, 𝑉 >= 𝑡𝑟𝑎𝑐𝑒 (𝑈𝑇𝑉). 

If 𝑈 = [
𝑢1 𝑢2

𝑢3 𝑢4
] and 𝑉 = [

𝑣1 𝑣2

𝑣3 𝑣4
], then < 𝑈, 𝑉 > = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 + 𝑢4𝑣4. 

Example: Find the value of 𝑘, for which the matrices 𝑈 = [
9 4
2 6

]  𝑎𝑛𝑑 𝑉 = [
2 −2
𝑘 4

] are 

orthogonal in the vector space 𝑀2×2 with usual inner product on 𝑀2×2. 

Solution: If matrices 𝑈 and 𝑉 are orthogonal, then 

< 𝑈, 𝑉 >= 0 

< [
9 4
2 −6

] , [
2 −2
𝑘 4

] >= 0 

𝑖. 𝑒. , (9)(2) + (4)(−2) + (2)(𝑘) + (−6)(4) = 0                                          

2𝑘 = 14  𝑖. 𝑒. , 𝑘 = 7 



STANDARD INNER PRODUCT ON 𝑷𝒏 

Let 𝑝 = 𝑎0 + 𝑎1𝑥 + ⋯……… . . +𝑎𝑛𝑥𝑛 and 𝑞 = 𝑏0 + 𝑏1𝑥 + ⋯……… . . +𝑏𝑛𝑥𝑛 are 

polynomials in 𝑃𝑛, then the standard inner product on 𝑃𝑛 is defined as- 

< 𝑝, 𝑞 > = 𝑎0𝑏0 + 𝑎1𝑏1 + ⋯……… .+𝑎𝑛𝑏𝑛 

Norm of a polynomial 𝑝 relative to this inner product is  

‖𝑝‖ = √< 𝑝, 𝑝 > = √𝑎0
2 + 𝑎1

2 + ⋯… . . +𝑎𝑛
2 

 

ANGLE BETWEEN VECTORS: Let 𝜃 be the angle between 𝑢 &  𝑣 in a real inner product 

space, then 

𝑐𝑜𝑠𝜃 =
< 𝑢, 𝑣 >

‖𝑢‖‖𝑣‖
, 0 ≤ 𝜃 ≤ 𝜋. 

ORTHOGONALITY:  

 Two vectors 𝑢 &  𝑣 in inner product space are called Orthogonal if < 𝑢, 𝑣 > = 0. 

 

Example: Show that the vectors 𝑢 = (0, 2, 0) , 𝑣 = (3, 0, 3), 𝑤 = (−4, 0, 4) form an 

orthogonal basis for 𝑅3 with Euclidean Inner Product. 

Solution: Here   𝑢 = (0, 2, 0) , 𝑣 = (3, 0, 3), 𝑤 = (−4, 0, 4) 

 Now < 𝑢, 𝑣 > = < (0, 2, 0), (3, 0, 3) > = (0)(3) + (2)(0) + (0)(3) = 0 

    < 𝑢,𝑤 > = < (0, 2, 0), (−4, 0, 4) > = (0)(−4) + (2)(0) + (0)(4) = 0 

< 𝑣,𝑤 > = < (3, 0, 3), (−4, 0, 4) > = (3)(−4) + (0)(0) + (3)(4) = 0  

So the vectors 𝑢, 𝑣 & 𝑤 form an orthogonal set and hence these vectors are linearly independent 

and hence form a basis for 𝑅3.  

 

GENERALIZED THEOREM OF PYTHAGORAS: 

If u & v are orthogonal vectors in an inner product space , then 

‖𝑢 + 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 

 

 

 

 

 



LEAST SQUARES SOLUTION OF LINEAR SYSTEMS:  

For every linear system   𝐴𝑋 = 𝐵,  the associated normal system  𝐴𝑇𝐴𝑋 = 𝐴𝑇𝐵                                                                                                                                          

is consistent and all solutions of this system are least squares solutions of the system 𝐴𝑋 = 𝐵. 

Example: Find the least squares solution of the system of linear equation 𝐴𝑋 = 𝐵, 

where 𝐴 = [
1 −2
2 1
2 0

] , 𝐵 = [
−3
2
1

]. 

OR 

Find the least squares solution of the linear system  

𝑥 − 2𝑦 = −3 

2𝑥 + 𝑦 = 2 

2𝑥 = 1 

Solution: The given system of equations in matrix form is   𝐴𝑋 = 𝐵, 

Where 𝐴 = [
1 −2
2 1
2 0

] , 𝐵 = [
−3
2
1

]  & 𝑋 = [
𝑥
𝑦] 

  

We have 𝐴𝑇𝐴 = [
1 2 2

−2 1 0
] [

1 −2
2 1
2 0

] 

= [
9 0
0 5

]  

 And    𝐴𝑇𝐵 = [
1 2 2

−2 1 0
] [

−3
2
1

] 

   = [
3
8
] 

 The associated normal system is given by 𝐴𝑇𝐴𝑋 = 𝐴𝑇𝐵 

𝑖. 𝑒. , [
9 0
0 5

] [
𝑥
𝑦] = [

3
8
]  

𝑖. 𝑒. , [
9𝑥
5𝑦

] = [
3
8
]  

 Which gives  9𝑥 = 3 and 5𝑦 = 8 

  Hence,  𝑥 =
1

3
 ,  𝑦 =

8

5
  are the required least squares solution. 

 

 

 

 

 

 

 

 

 



TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. If 𝑢 = (3, 4) is a vector in 𝑅2, then the length of ‘𝑢’ is 7.    (F) 

2. The norm of the vector 𝑢 = (3, 0, 4, 1) in 𝑅4 is √26
3

.    (F) 

3. If 𝑢 & 𝑣 are unit orthogonal vectors in an inner product space, then ‖𝑢 + 𝑣‖ ≠ 0. (T) 

4. The inner product of a vector with itself (i.e.,< 𝑢, 𝑢 >) can be negative real no. (F) 

5. The inner product of a nonzero vector with itself is always a positive real no. (T) 

6. If 𝑢 = (0, 1), 𝑣 = (1, 0) & 𝑘 = 2, then < 𝑘𝑢, 𝑣 ≥ 0.     (T) 

7. If 𝑢 = (2, 1, 0, −3), 𝑣 = (3, 0, 2, 2), then < 𝑢, 𝑣 >= 0.    (T) 

 

 

OBJECTIVE QUESTIONS 
1. Which of the following sets of vectors are orthogonal with respect to the inner product 

defined by < 𝑢, 𝑣 >= 3𝑢1𝑣1 + 2𝑢2𝑣2 on 𝑅2: 

a) (1, -1), (2, 2) 

b) (-1, 1), (2, -3) 

c) (-1, 1), (2, 3) 

d) (-1, 1), (-2, 3) 

 

2. Which of the following sets of vectors are orthogonal with respect to the Euclidean 

inner product on 𝑅2: 

a) (1, 2, −5) & (−3,−1,1) 

b) (𝟏, 𝟐, −𝟓) & (−𝟑,−𝟏,−𝟏) 

c) (1, 2, 0) & (0, 1,1) 

d) (0, 0, 1) & (1, 0, 1) 

 

3. If angle between vectors 𝑢 and 𝑣 is zero such that ‖𝑢‖ = 2, ‖𝑣‖ = 3, then < 𝑢, 𝑣 >= 

a) 5 

b) √5 

c) 6 

d) √6 

4. If cosine value of angle between vectors 𝑢 and 𝑣 is 
1

2
  and  ‖𝑢‖ = 2, ‖𝑣‖ = 3, then   

< 𝑢, 𝑣 >= 

a) 6 

b) 3 

c) 2 

d) 1 

5. If 𝑢 = (−2, 1, 5), 𝑣 = (−1,−2, 2) 𝑎𝑛𝑑 𝑘 = 1, then the value of < 𝑘𝑢, 𝑣 > is 

a) 5 

b) −5 

c) 𝟏𝟎 

d) −10 

 

 



6. If 𝑢 = (−2, 1, 5), 𝑣 = (−1,−2, 2), then the value of < 3𝑢, 5𝑣 > is 

a) 10 

b) 15 

c) 150 

d) 80 

 

7. If 𝑝 = 3𝑥 + 4𝑥2 is a vector in the vector space 𝑃2, then ‖𝑃‖ = 

a) 7 

b) 25 

c) √12 

d) 5 

 

8. The values of 𝑘 for which 𝑢 =  (𝑘, −4,8) and 𝑣 =  (𝑘, 𝑘, −4) are orthogonal in 

Euclidean Inner Product Space 𝑅3 are- 

a) 4,−8 

b) −4,−8 

c) 𝟖,−𝟒 

d) 4,8 

 

9. Which of the following vectors in 𝑅3 are orthogonal with respect to the Euclidean 

inner product? 

a) (2, −3,−12) & (3,−2, 0) 

b) (2, −3,−12) & (3,−2,−1) 

c) (2, 3, 12) & (3,−2, 1) 

d) (𝟐,−𝟑,−𝟏𝟐) & (𝟑, −𝟐, 𝟏) 

 

10. If  𝑈 = [
−2 −1
4 −5

] , 𝑉 = [
3 5

−6 −4
], then < 𝑈, 𝑉 > is equal to 

a) -15 

b) 7 

c) 5 

d) 1 

 

 

 

 

 

 

 

 

 



CHAPTER-7 DIAGONALIZATION & QUADRATIC FORMS 

ORHTOGONAL MATRICES: A square matrix 𝐴 is said to be Orthogonal if its transpose is 

the same as its inverse i.e., if   𝐴𝑇 = 𝐴−1                                                                                                         

 OR equivalently if    𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼 

Example: Show that the matrix 𝐴 =

[
 
 
 
 
2

7

3

7

6

7
3

7
−

6

7

2

7
6

7

2

7
−

3

7]
 
 
 
 

 is orthogonal and hence find 𝐴−1. 

Solution: We have 𝐴𝑇 =

[
 
 
 
 
2

7

3

7

6

7
3

7
−

6

7

2

7
6

7

2

7
−

3

7]
 
 
 
 

 

Now  𝐴𝐴𝑇 =

[
 
 
 
 
2

7

3

7

6

7
3

7
−

6

7

2

7
6

7

2

7
−

3

7]
 
 
 
 

[
 
 
 
 
2

7

3

7

6

7
3

7
−

6

7

2

7
6

7

2

7
−

3

7]
 
 
 
 

= [
1 0 0
0 1 0
0 0 1

] = 𝐼3 

Hence, matrix 𝐴 is orthogonal. 

And   𝐴−1 = 𝐴𝑇 =

[
 
 
 
 
2

7

3

7

6

7
3

7
−

6

7

2

7
6

7

2

7
−

3

7]
 
 
 
 

. 

 

THEOREM: The following statements are equivalent for an 𝑛 × 𝑛 matrix ‘A’- 

(i) ‘A’ is orthogonal. 

(ii) The row vectors of ‘A’ form an orthonormal set in 𝑅𝑛 with respect to Euclidean 

inner product. 

(iii) The column vectors of ‘A’ form an orthonormal set in 𝑅𝑛 with respect to Euclidean 

inner product. 

 

PROPERTIES OF ORTHOGONAL MATRICES:   

(1) If matrix 𝐴 is Orthogonal, then det(𝐴) = 1 𝑜𝑟 − 1 but converse is not necessarily true. 

(2)  The inverse of an orthogonal matrix is Orthogonal. 

(3) The product of orthogonal matrices is Orthogonal. 

 

ORTHOGONAL DIAGONALIZATION:  

If ‘A’ & ‘B’ are square matrices, then we say that ‘A’ & ‘B’ are orthogonally similar if there 

is an orthogonal matrix ‘P’ such that   𝑃𝑇𝐴𝑃 = 𝐵. 

If the matrix ‘A’ is orthogonally similar to some diagonal matrix, say 𝑃𝑇𝐴𝑃 = 𝐷, then we 

say that ‘A’ is orthogonally diagonalizable and that ‘P’ orthogonally diagonalizes ‘A’. 



CONDITIONS FOR ORTHOGONAL DIAGONALIZABILITY 

THEOREM:  If ‘A’ is an 𝑛 × 𝑛 matrix, then the following statements are equivalent – 

(i) ‘A’ is orthogonally diagonalizable. 

(ii) ‘A’ has an orthonormal set of n eigenvectors. 

(iii) ‘A’ is Symmetric. 

 

SYMMETRIC MATRIX: A real square matrix 𝐴 is said to be Symmetric if 𝐴𝑇 = 𝐴. 

SKEW-SYMMETRIC MATRIX: A real square matrix 𝐴 is said to be Skew-Symmetric if   

𝐴𝑇 = −𝐴. 

PROPERTIES OF SYMMETRIC MATRICES 

THEOREM: If ‘A’ is symmetric matrix, then 

(i) The eigenvalues of ‘A’ are all real numbers. 

(ii) Eigenvectors from different eigenspaces are orthogonal. 

 

QUADRATIC FORMS: 

If ‘A’ is symmetric 𝑛 × 𝑛 matrix and X is an 𝑛 × 1 column vector of variables, then we call the 

function  𝑄𝐴(𝑋) = 𝑋𝑇𝐴𝑋, the Quadratic form associated with ‘A’.      

Matrix corresponding to quadratic form on  𝑅2 i.e., 𝑎𝑥2 + 𝑏𝑦2 + 2𝑐𝑥𝑦 is given as   [
𝑎 𝑐
𝑐 𝑏

]. 

The matrix corresponding to quadratic form on  𝑅3 i.e.,  

𝑎1𝑥1
2 + 𝑎2𝑥2

2 + 𝑎3𝑥3
2 + 2𝑎4𝑥1𝑥2 + 2𝑎5𝑥1𝑥3 + 2𝑎6𝑥2𝑥3 is given as [

𝑎1 𝑎4 𝑎5

𝑎4 𝑎2 𝑎6

𝑎5 𝑎6 𝑎3

]. 

CONJUGATE TRANSPOSE OF A MATRIX: If 𝐴 is a complex matrix, then the conjugate 

transpose of 𝐴 denoted by 𝐴∗is defined as  𝐴∗ = (𝐴̅)𝑇 = (𝐴𝑇)̅̅ ̅̅ ̅̅ . 

PROPERTIES OF CONJUGATE TRANSPOSE: 

(i) (𝐴∗)∗ = 𝐴 

(ii) (𝐴 + 𝐵)∗ = 𝐴∗ + 𝐵∗ 

(iii) (𝑘𝐴)∗ = 𝑘̅𝐴∗ 

(iv) (𝐴𝐵)∗ = 𝐵∗𝐴∗ 

 

HERMITIAN MATRIX: A square complex matrix 𝐴 is said to be Hermitian if  𝐴∗ = 𝐴. 

PROPERTIES: 

(1) The eigenvalues of a Hermitian matrix are real numbers. 

(2) If ‘A’ is a Hermitian matrix, then eigenvectors from different eigenspaces are 

orthogonal.  



SKEW-HERMITIAN MATRIX: A square complex matrix 𝐴 is said to be Skew Hermitian 

if 𝐴∗ = −𝐴. 

 

UNITARY MATRIX: A square complex matrix 𝐴 is said to be Unitary if its conjugate 

transpose is the same as its inverse i.e., if  𝐴∗ = 𝐴−1      

  or equivalently if  𝐴𝐴∗ = 𝐴∗𝐴 = 𝐼. 

Example: Show that the matrix 𝐴 = [

1

√3
−

1−𝑖

√3
1+𝑖

√3

1

√3

] is Unitary and hence find 𝐴−1. 

Solution: We have       𝐴∗ = (𝐴̅)𝑇 

= [

1

√3
−

1+𝑖

√3
1−𝑖

√3

1

√3

]

𝑇

  

= [

1

√3

1−𝑖

√3

−
1+𝑖

√3

1

√3

]  

 Now  𝐴𝐴∗ = [

1

√3
−

1−𝑖

√3
1+𝑖

√3

1

√3

] [

1

√3

1−𝑖

√3

−
1+𝑖

√3

1

√3

] 

     = [
1 0
0 1

] = 𝐼2  

 Hence 𝐴 is a Unitary matrix and  𝐴−1 = 𝐴∗ = [

1

√3

1−𝑖

√3

−
1+𝑖

√3

1

√3

] . 

 

THEOREM: If ‘A’ is an 𝑛 × 𝑛 matrix with complex entries, then following are equivalent- 

(i) ‘A’ is Unitary. 

(ii) ‖𝐴𝑋‖ = ‖𝑋‖ , ∀ 𝑋 ∈ 𝐶𝑛 

(iii) 𝐴𝑋. 𝐴𝑌 = 𝑋. 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐶𝑛  

(iv) The column vectors of ‘A’ form orthonormal set in 𝐶𝑛 w.r.t. Complex Euclidean 

inner product. 

(v) The row vectors of ‘A’ form orthonormal set in 𝐶𝑛 w.r.t. Complex Euclidean inner 

product. 

 

 

 



SKEW- SYMMETRIC AND SKEW-HERMITIAN MATRIX 

A square matrix ‘A’ with real entries is defined to be Skew-symmetric if 𝐴𝑇 = −𝐴. 

 A skew- symmetric matrix must have zeros on main diagonal and each entry off the 

main diagonal must be the negative of its mirror image about main diagonal.  

 The example of skew symmetric matrix is = [
0 −1 2
1 0 3

−2 −3 0
] . 

A square complex matrix ‘A’ is said to be Skew-Hermitian if 𝐴∗ = −𝐴. 

 A skew-hermitian matrix must have zeros or pure imaginary numbers on main diagonal 

and each entry off the main diagonal must be the negative of complex conjugate of its mirror 

image about the main diagonal.         

 The example of skew-hermitian matrix is 𝐴 = [
2𝑖 −1 − 𝑖 2

1 − 𝑖 𝑖 𝑖
−2 𝑖 0

]. 

 

 

 

TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. If a matrix ‘A’ is orthogonal, then 𝑑𝑒𝑡(𝐴) =  1 𝑜𝑟 − 1.    (T) 

2. If a matrix ‘A’ is orthogonal, then (det 𝐴)2 = 1.     (T) 

3. If determinant of a matrix is 1 𝑜𝑟 − 1, then the matrix is orthogonal.  (F) 

4. The rows and columns of an orthogonal matrix are orthogonal.   (T) 

5. The inverse of an orthogonal matrix is not necessarily orthogonal.   (F) 

6. If 𝐴 is Orthogonal, then 𝑘𝐴 is also orthogonal for any scalar 𝑘.   (F) 

7. A square matrix ‘𝐴’ is Orthogonal, if 𝐴∗ = 𝐴.     (F) 

8. A square matrix ‘𝐴’ is Unitary, if 𝐴∗ = 𝐴.      (F) 

9. A square complex matrix 𝐴 is Unitary if its conjugate transpose equals its inverse. (T) 

10. In case of real matrices, Hermitian and Symmetric matrices are same.  (T) 

11. The matrix A= [
1 2 − 𝑖 1 + 𝑖

2 + 𝑖 2 1 + 2𝑖
1 − 𝑖 1 + 2𝑖 3

] is Hermitian.    (F) 

 

 

 

 

 

 



OBJECTIVE QUESTIONS 

1. If 3𝑥2 − 4𝑦2 − 4𝑥𝑦 be the quadratic form, then associated symmetric matrix will be 

a) [
3 −4

−4 −4
] 

b) [
−4 −4
−4 3

] 

c) [
3 2
2 −4

] 

d) [
𝟑 −𝟐

−𝟐 −𝟒
] 

 

2. If 𝑥2 − 4𝑦2 + 3𝑧2 + 2𝑥𝑦 + 4𝑦𝑧 − 6𝑧𝑥 be the quadratic form, then the associated 

symmetric matrix will be 

a) [
1 1 3
1 −4 2
3 2 3

] 

b) [
1 1 −3
1 −4 −2

−3 −2 3
] 

c) [
𝟏 𝟏 −𝟑
𝟏 −𝟒 𝟐

−𝟑 𝟐 𝟑
] 

d) [
1 −1 3

−1 −4 2
3 2 3

] 

3. For which value of 𝑎 & 𝑏, the matrix [
1 2 − 𝑖 1 + 𝑖
𝑎 2 1 + 2𝑖

1 − 𝑖 𝑏 3
] is Hermitian? 

a) 𝑎 = 2 + 𝑖, 𝑏 = 1 + 2𝑖 

b) 𝑎 = 2 − 𝑖, 𝑏 = 1 − 2𝑖 

c) 𝒂 = 𝟐 + 𝒊, 𝒃 = 𝟏 − 𝟐𝒊 

d) 𝑎 = 2 − 𝑖, 𝑏 = 1 + 2𝑖 
 

4. If a square matrix 𝐴 is such that 𝐴−1 = 𝐴∗ , then matrix 𝐴 is- 

a) Hermitian  

b) Skew Hermitian 

c) Unitary 

d) None 

5. A complex square matrix 𝐴 is said to be Hermitian matrix, if 

a) 𝐴𝐴𝑇 = 𝐼 

b) 𝐴𝑇 = 𝐴 

c) (𝑨̅)𝑻 = 𝑨 

d) 𝐴−1 = 𝐴 

 

6. The eigenvalues of Hermitian matrix are- 

a) Complex only  

b) Complex & Real both   

c)  Always Real 

d) Always Zero 



CHAPTER-8 LINEAR TRANSFORMATION 

GENERAL LINEAR TRANSFORMATION: If 𝑇: 𝑉 → 𝑊 is a function from a vector space 

𝑉 to a vector space 𝑊, then 𝑇 is called a Linear Transformation from 𝑉 to 𝑊 if the following 

two properties hold for all vectors u & v in V and for all scalars k – 

(i) 𝑇(𝑘𝑢) = 𝑘𝑇(𝑢)   [Homogeneity Property] 

(ii) 𝑇(𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣)  [Additive Property] 

OR 

In combination of (i) & (ii), 𝑇(𝑘1𝑣1 + 𝑘2𝑣2) = 𝑘1𝑇(𝑣1) + 𝑘2𝑇(𝑣2), where 𝑣1, 𝑣2 ∈ 𝑉 and 

𝑘1, 𝑘2 are scalars. 

THEOREM: If 𝑇: 𝑉 → 𝑊 is a Linear Transformation, then  

(i) 𝑇(0) = 0 

(ii) 𝑇(𝑢 − 𝑣) = 𝑇(𝑢) − 𝑇(𝑣), for all u & v in V 

Example: Check whether the map  𝑇: 𝑅2 → 𝑅2 given by 𝑇(𝑥, 𝑦) = (𝑥𝑦, 𝑥) is linear or not. 

 

Solution: Let  𝑢 = (𝑥1, 𝑦1), 𝑣 = (𝑥2, 𝑦2) ∈ 𝑅2, so  𝑢 + 𝑣 = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 

𝑇(𝑢 + 𝑣) = 𝑇(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)  

             = ((𝑥1 + 𝑥2)(𝑦1 + 𝑦2), 𝑥1 + 𝑥2)  

    = (𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥1𝑦2 + 𝑥2𝑦1, 𝑥1 + 𝑥2 )  ……….(1) 

 

𝑇(𝑢) + 𝑇(𝑣) = 𝑇(𝑥1, 𝑦1) + 𝑇(𝑥2, 𝑦2)  

          = (𝑥1𝑦1, 𝑥1) + (𝑥2𝑦2, 𝑥2)  

          = (𝑥1𝑦1 + 𝑥2𝑦2, 𝑥1 + 𝑥2)    ……….(2) 

 From (1) & (2), it is clear that 𝑇(𝑢 + 𝑣) ≠ 𝑇(𝑢) + 𝑇(𝑣) 

 Therefore, 𝑇 is not Linear. 

 

Ex: Show that the function  𝑇: 𝑅2 → 𝑅2 given by 𝑇(𝑥, 𝑦) = (𝑦, 𝑥) is a linear transformation.  

Solution: First we will show that  𝑇(𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣) 

 Let  𝑢 = (𝑥1, 𝑦1), 𝑣 = (𝑥2, 𝑦2) ∈ 𝑅2, so  𝑢 + 𝑣 = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 

 

𝑇(𝑢 + 𝑣) = 𝑇(𝑥1 + 𝑥2, 𝑦1 + 𝑦2)  

               = ((𝑦1 + 𝑦2), (𝑥1 + 𝑥2))    …….(1) 

And    𝑇(𝑢) + 𝑇(𝑣) = 𝑇(𝑥1, 𝑦1) + 𝑇(𝑥2, 𝑦2)  

               = (𝑦1, 𝑥1) + (𝑦2, 𝑥2)  

               = ((𝑦1 + 𝑦2), (𝑥1 + 𝑥2))    ……..(2) 

 From (1) & (2), it is clear that 𝑇(𝑢 + 𝑣) = 𝑇(𝑢) + 𝑇(𝑣) 

  

Now     𝑇(𝑘𝑢) = 𝑇(𝑘(𝑥1, 𝑦1)) 

= 𝑇(𝑘𝑥1, 𝑘𝑦1)  

= (𝑘𝑦1, 𝑘𝑥1)  

= 𝑘(𝑦1, 𝑥1)  

= 𝑘𝑇(𝑢)  

 Therefore, 𝑇 is  a Linear transformation. 

 



Some Other Examples: 

Example (1) Matrix Transformations: 𝑇𝐴: 𝑅𝑛 → 𝑅𝑚 is a linear transformation. 

Example (2) Zero Transformation: The mapping 𝑇: 𝑉 → 𝑊 such that     𝑇(𝑣) = 0, ∀ 𝑣 ∈ 𝑉 

is a linear transformation. 

Example (3) Identity Operator: The mapping 𝐼: 𝑉 → 𝑉 defined by       𝐼(𝑣) = 𝑣, ∀ 𝑣 ∈ 𝑉 is 

a linear transformation. 

Example (4) Dilation and Contraction Operators: If V is a vector space and k is a scalar, 

then 𝑇: 𝑉 → 𝑉 given by  𝑇(𝑥) = 𝑘𝑥 is a linear operator on V. 

Example (5) Transformations on Matrix Spaces: Let 𝑀𝑛𝑛 be the vector space of all 𝑛 × 𝑛 

matrices, then- 

(i) 𝑇1(𝐴) = 𝐴𝑇 is a linear transformation. 

(ii) 𝑇2(𝐴) = det (𝐴) is not linear. 

Example (6) Translation is not Linear: If 𝑥0 is a fixed non-zero vector in 𝑅2, then the 

transformation 𝑇(𝑥) = 𝑥 + 𝑥0 is not linear. 

 

Finding Linear Transformations from Images of Basis Vectors: 

THEOREM: Let 𝑇: 𝑉 → 𝑊 is a linear transformation, where 𝑉 is finite dimensional. If           

𝑆 = {𝑣1, 𝑣2, ……… , 𝑣𝑛 } is a basis for 𝑉, then the image of any vector 𝑣 in 𝑉 can be expressed 

as  𝑇(𝑣) = 𝑐1𝑇(𝑣1) + 𝑐2𝑇(𝑣2) + ⋯………………+ 𝑐𝑛𝑇(𝑣𝑛) 

where 𝑐1, 𝑐2, …… 𝑐𝑛 are coeff. required to express 𝑣 as a linear combination of vectors in 𝑆. 

Example: Let 𝑆 = {𝑣1, 𝑣2} be the basis for 𝑅2 where 𝑣1 = (1, 1), 𝑣2 = (1, 0) and  𝑇: 𝑅2 → 𝑅2  

be the linear transformation such that (𝑣1) = (1, 2), 𝑇(𝑣2) = (3, 0) , then find  𝑇(𝑥, 𝑦). 

Solution: First we need to express (𝑥, 𝑦) as a linear combination of 𝑣1 & 𝑣2. 

Let  (𝑥, 𝑦) = 𝑐1𝑣1 + 𝑐2𝑣2  ……….(1) 

𝑖. 𝑒. ,     (𝑥, 𝑦) = 𝑐1(1, 1) + 𝑐2(1, 0)  

𝑖. 𝑒. ,      (𝑥, 𝑦) = (𝑐1 + 𝑐2, 𝑐1)    

 Equating both sides, 

  𝑐1 + 𝑐2 = 𝑥    ..……..(2) 

  𝑐1 = 𝑦     ………(3) 

 Solving (2) & (3), we get  𝑐1 = 𝑦 &  𝑐2 = 𝑥 − 𝑦 

 Since 𝑇 is linear, 

                  𝑇(𝑥, 𝑦) = 𝑐1𝑇(𝑣1) + 𝑐2𝑇(𝑣2),  using equation (1) 

     = 𝑐1(1, 2) + 𝑐2(3, 0) 

     = (𝑐1, 2𝑐1) + (3𝑐2, 0) 

     = (𝑐1 + 3𝑐2, 2𝑐1) 

     = [𝑦 + 3(𝑥 − 𝑦), 2𝑦]  
     = (3𝑥 − 2𝑦, 2𝑦) , which is the required formula for 𝑇(𝑥, 𝑦). 

 



KERNEL AND RANGE OF LINEAR TRANSFORMATIONS: If 𝑇: 𝑉 → 𝑊 is a linear 

transformation, then the set of vectors in 𝑉 that 𝑇 maps into ‘0’ is called the Kernel of 𝑇 and is 

denoted by ker (𝑡). The set of all vectors in 𝑊 that are images under 𝑇 of at least one vector in 

𝑉 is called Range of 𝑇 and is denoted by 𝑅(𝑡). 

Example (1) Kernel and Range of Zero Transformation: ker(𝑡) = 𝑉,   𝑅(𝑡) = {0}. 

Example (2) Kernel and Range of Identity Operator: ker(𝐼) = {0},   𝑅(𝐼) = 𝑉. 

PROPERTIES OF KERNEL AND RANGE: If 𝑇: 𝑉 → 𝑊 is a linear transformation, then 

(i) The kernel of 𝑇 is a subspace of 𝑉. 

(ii) The range of 𝑇 is a subspace of 𝑊. 

RANK AND NULLITY OF LINEAR TRANSFORMATIONS: Let 𝑇: 𝑉 → 𝑊 is a linear 

transformation. If the range of 𝑇 is finite dimensional, then its dimension is called the Rank of 

𝑇; and if the kernel of 𝑇 is finite dimensional, then its dimension is called the Nullity of 𝑇. 

 The Rank of T is denoted by rank(t) and Nullity of T is denoted by nullity(t).  

THEOREM: If 𝑇: 𝑉 → 𝑊 is a linear transformation from an 𝑛-dimensional vector space 𝑉 to 

a vector space 𝑊, then  𝑟𝑎𝑛𝑘(𝑡) + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑡) = 𝑛.  

NOTE: If 𝑇𝐴: 𝑅𝑛 → 𝑅𝑚, then 𝑟𝑎𝑛𝑘(𝑇𝐴) + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝑇𝐴) = 𝑛 

 

ONE-TO-ONE LINEAR TRANSFORMATION: If  𝑇: 𝑉 → 𝑊 is a linear transformation 

from a vector space V to a vector space W , then T is said to be One-to-One if T maps distinct 

vectors in V into distinct vectors in W. 

ONTO LINEAR TRANSFORMATION: If 𝑇: 𝑉 → 𝑊 is a linear transformation from a 

vector space V to a vector space W , then T is said to be Onto if every vector in W is the image 

of at least one vector in V. 

THEOREM: If V is a finite-dimensional vector space and if  𝑇: 𝑉 → 𝑉 is a linear operator, 

then the following statements are equivalent- 

(i) T is One-to-One. 

(ii) ker(𝑡) = {0}. 

(iii) T is Onto [i.e., (𝑡) = 𝑉 ]. 

DIMENSION AND LINEAR TRANSFORMATIONS: There are two important facts about 

a linear transformation 𝑇: 𝑉 → 𝑊 in the case where V & W are finite-dimensional- 

(i) If dim (𝑊) < dim (𝑉), then T cannot be One-to-One. 

(ii) If dim (𝑉) < dim (𝑊), then T cannot be Onto. 

 

ISOMORPHISM: If a linear transformation 𝑇: 𝑉 → 𝑊 is both One-to-One & Onto, then T is 

said to be an ISOMORPHISM and vector spaces V & W are said to be Isomorphic. 

THEOREM: Every real n-dimensional vector space is Isomorphic to 𝑅𝑛. 



Example (1) The linear transformation 𝑇: 𝑃𝑛−1 → 𝑅𝑛 defined by 

𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1 → (𝑎0, 𝑎1, …… , 𝑎𝑛) is a Natural Isomorphism from 𝑃𝑛−1 𝑡𝑜 𝑅𝑛. 

Example (2) The transformation 𝑇:𝑀22 → 𝑅4 defined by 

𝑇 [
𝑎1 𝑎2

𝑎3 𝑎4
] = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is Natural Transformation from 𝑀22 → 𝑅4. 

NOTE: The vector space 𝑀𝑚𝑛 of 𝑚 × 𝑛 matrices with real entries is Isomorphic to 𝑅𝑚𝑛. 

COMPOSITIONS OF LINEAR TRANSFORMATIONS: 

If  𝑇1: 𝑈 → 𝑉 and  𝑇2: 𝑉 → 𝑊 are linear transformations, then the Composition of 𝑇2 with 𝑇1, 

defined by 𝑇2𝜊𝑇1 is the function from U to W defined by        

(𝑇2𝜊𝑇1)(𝑢) = 𝑇2(𝑇1(𝑢)), where u is a vector in U. 

INVERSE LINEAR TRANSFORMATIONS 

If T is One-to-One, then each vector w in R(t) is the image of a unique vector v in V. This 

uniqueness allows us to define a new function, called the Inverse of T and denoted by 𝑇−1, that 

maps w back into v. 

THEOREM: If 𝑇1: 𝑈 → 𝑉 and  𝑇2: 𝑉 → 𝑊 are one-to-one linear transformations, then 

(i) 𝑇2𝜊𝑇1 is one-to-one. 

(ii) (𝑇2𝜊𝑇1)
−1 = 𝑇1

−1𝜊 𝑇2
−1 

 

 

TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. If 𝑇: 𝑉 → 𝑉 is an operator such that 𝑇(𝑣) = 2, ∀ 𝑣 ∈ 𝑉, then 𝑇 is linear.  (F) 

2. The function 𝑇: 𝑅2 → 𝑅3 given by 𝑇(𝑥, 𝑦) = (2𝑥 + 3𝑦, 4𝑦 − 𝑥 − 1, 𝑥) is linear. (F) 

3. The function 𝑇: 𝑅2 → 𝑅2 given by 𝑇(𝑥, 𝑦) = (2𝑥 + 3𝑦, 4𝑦 − 1) is linear.  (F) 

4. If ‘𝑇’ is translation operator, then it is linear.      (F) 

5. If 𝑇: 𝑉 → 𝑊 is an isomorphism, then ker(𝑇) = {0}.     (T) 

6. If 𝑇: 𝑉 → 𝑊 is a one to one linear transformation, then ker(𝑇) = {0}.  (T) 

7. If 𝑇: 𝑉 → 𝑊 is a linear transformation, then ker(𝑇) is a subspace of 𝑊.  (F) 

 

 

 

 

 

 



OBJECTIVE QUESTIONS 

1. Let 𝑇: 𝑅2 → 𝑅2 be a linear operator given by 𝑇(𝑥, 𝑦) = (𝑦 − 𝑥, −2𝑥 + 2𝑦). Which 

of the following vector is in 𝐾𝑒𝑟 𝑇? 

a) (−1, 2) 

b) (−1, 1) 

c) (𝟏, 𝟏) 

d) (1, −1) 

 

2. If 𝑇: 𝑉 → 𝑊 be a linear transformation, then ker(𝑇)  & 𝑟𝑎𝑛𝑔𝑒 (𝑇) are subspaces of 

vector space(s) 

a) 𝑉 

b) 𝑊 

c) 𝑽 and 𝑾 respectively. 

d) 𝑊 and 𝑉 respectively. 

 

3. Which of the following transformations 𝑇: 𝑅2 → 𝑅 is a linear transformation? 

a) 𝑇(𝑥, 𝑦) = 1 

b) 𝑻(𝒙, 𝒚) = 𝟐𝒙 + 𝒚 

c) 𝑇(𝑥, 𝑦) = 𝑥 + 1 

d) 𝑇(𝑥, 𝑦) = 𝑥2 

 

4. Let 𝑇: 𝑅5 → 𝑅4 is a linear transformation with rank 3, then no. of basis elements in 

the kernel of T is- 

a) 1 

b) 2  

c) 3  

d) 4 

 

5. If 𝑇:𝑀33 → 𝑅8 is a linear transformation with rank 3, then Nullity of 𝑇 is- 

a) 2 

b) 3 

c) 4 

d) 6 

 

6. Let 𝑇1(𝑥, 𝑦) = (𝑦, 𝑥) and 𝑇2(𝑥, 𝑦) = (𝑥 + 𝑦, 𝑥 − 𝑦), then 𝑇2𝜊𝑇1(𝑥, 𝑦) = 

a) (𝑥 + 𝑦, 𝑥 − 𝑦) 

b) (𝑥 − 𝑦, 𝑥 + 𝑦) 

c) (𝒙 + 𝒚, 𝒚 − 𝒙) 

d) (𝑥 + 𝑦,−𝑥 − 𝑦) 

 

 

 

 



CHAPTER-9 NUMERICAL METHODS 

LU-DECOMPOSITION: A factorization of a square matrix 𝐴 as 𝐴 = 𝐿𝑈, where 𝐿 is Lower 

triangular & 𝑈 is Upper triangular matrix, is called an LU-Decomposition of 𝐴. 

To construct an LU-Decomposition for 2 × 2 matrix , we can take 

 𝐿 = [
1 0
𝑙1 1

]  & 𝑈 = [
𝑢1 𝑢2

0 𝑢3
]. 

NOTE: Not every square matrix has an LU-Decomposition. However, we will see that if it 

is possible to reduce a square matrix 𝐴 to row echelon form by Gaussian elimination without 

performing any row interchanges, then matrix 𝐴 will have an LU-Decomposition, though it 

may not be unique. 

Example: Find LU-decomposition of the matrix 𝐴 = [
5 −1

−1 −1
]. 

Solution:  Let        𝐿𝑈 = 𝐴 

𝑖. 𝑒. , [
1 0
𝑙1 1

] [
𝑢1 𝑢2

0 𝑢3
] = [

5 −1
−1 −1

]  

𝑖. 𝑒. , [
𝑢1 𝑢2

𝑙1𝑢1 𝑙1𝑢2 + 𝑢3
] = [

5 −1
−1 −1

]  

 

Equating both sides, we get 

𝑢1 = 5, 𝑢2 = −1  

𝑙1𝑢1 = −1  

𝑖. 𝑒. , 𝑙1(5) = −1 ⇒ 𝑙1 = −
1

5
 

and  𝑙1𝑢2 + 𝑢3 = −1 

𝑖. 𝑒. , (−
1

5
) (−1) + 𝑢3 = −1 ⇒ 𝑢3 = −

6

5
 

 Hence, 𝐿 = [
1 0

−
1

5
1]  𝑎𝑛𝑑 𝑈 = [

5 −1

0 −
6

5

] 

 Which is the required 𝐿𝑈 − decomposition. 

 

DOMINANT EIGENVALUES: If the distinct eigenvalues of a matrix A are 𝜆1, 𝜆2, …… . , 𝜆𝑘 

and |𝜆1| is larger than |𝜆2|, |𝜆3|, ……… . , |𝜆𝑘|; then 𝜆1 is called a Dominant Eigenvalue of A. 

Any eigenvector corresponding to a dominant eigenvalue is called dominant eigenvector of A 

NOTE: Some matrices have dominant eigenvalues and some do not have. 

For example, if distinct eigenvalues of a matrix are 𝜆1 = −4,  𝜆2 = −2, 𝜆3 = 1, 𝜆4 = 3 then 

𝜆1 = −4 is dominant since |𝜆1| = 4 is greater than absolute values of all other eigenvalues. 

But if the distinct eigenvalues of a matrix are 𝜆1 = 7,  𝜆2 = −7, 𝜆3 = −2, 𝜆4 = 5 then    

|𝜆1| = |𝜆2| = 7so there is no eigenvalue whose absolute value is greater than the absolute value 

of all the other eigenvalues. 



THEOREM 1 If 𝐴 is an 𝑚 × 𝑛 matrix, then 

(i) The matrices 𝐴 and 𝐴𝑇𝐴 have the same null space. 

(ii) The matrices 𝐴 and 𝐴𝑇𝐴 have the same row space. 

(iii) The matrices 𝐴 and 𝐴𝑇𝐴 have the same column space. 

(iv) The matrices 𝐴 and 𝐴𝑇𝐴 have the same rank. 

THEOREM 2 If 𝐴 is an 𝑚 × 𝑛 matrix, then 

(i) 𝐴𝑇𝐴 is orthogonally diagonalizable. 

(ii) The eigenvalues of 𝐴𝑇𝐴 are non-negative. 

 

SINGULAR VALUES: If 𝐴 is an 𝑚 × 𝑛 matrix and if 𝜆1, 𝜆2, …… . , 𝜆𝑛 are eigenvalues of 

symmetric matrix 𝐴𝑇𝐴, then the numbers √𝜆1, √𝜆2, …… . . √𝜆𝑛 are called the Singular values 

of matrix 𝐴. 

Example: Find the Singular values of the matrix  𝐴 = [
1 1
0 1
1 0

]. 

Solution: We have  

𝐴𝑇𝐴 = [
1 0 1
1 1 0

] [
1 1
0 1
1 0

]  

         = [
2 1
1 2

]  

 The characteristic equation of 𝐴𝑇𝐴 is       det(𝜆𝐼 − 𝐴𝑇𝐴) = 0 

 det (𝜆 [
1 0
0 1

] − [
2 1
1 2

]) = 0 

det ([
𝜆 0
0 𝜆

] − [
2 1
1 2

]) = 0 

det ([
𝜆 − 2 −1
−1 𝜆 − 2

]) = 0 

(𝜆 − 2)(𝜆 − 2) − (−1)(−1) = 0 

𝜆2 − 4𝜆 + 3 = 0     

(𝜆 − 3)(𝜆 − 1) = 0 ⇒ 𝜆 = 3, 1 

 So the eigenvalues of 𝐴𝑇𝐴 are 𝜆1 = 3 & 𝜆2 = 1 

and singular values of ‘𝐴′ are  𝜎1 = √𝜆1 = √3 ; 

    𝜎2 = √𝜆2 = √1 = 1 



TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. Every matrix has dominant eigen value.      (F) 

2. Every square matrix need not have LU-Decomposition.    (T) 

3. The 𝐿𝑈 −decomposition of a matrix is unique.     (F) 

4. If 𝐴 is an 𝑚 × 𝑛 matrix, then 𝐴𝑇𝐴 is an 𝑚 × 𝑚 matrix.    (F) 

5. If 𝐴 is an 𝑚 × 𝑛 matrix, then the eigenvalues of 𝐴𝑇𝐴 cannot be negative.  (T) 

OBJECTIVE QUESTIONS 

1. Which of the following set of eigenvalues has a dominant eigenvalue- 

a) {−10,0,1,10} 

b) {5, −5,2,3} 

c) {−𝟒,−𝟑, 𝟎, 𝟏} 

d) None 

2. Which of the following is dominant eigenvalue of the matrix𝐴 = [

1 0
5 2

0 0
0 0

1 3
2 0

3 0
2 −4

]. 

a) 3 

b) −𝟒 

c) 5 

d) No dominant eigen value 

3. The singular values of a 3 × 3 matrix 𝐴 are 2,  √5 and 2√2. The corresponding eigenvalues 

of the matrix 𝐵, where 𝐵 = 𝐴𝑇𝐴 are 

a) 2,  √5 and 2√2 

b) 2, 5 and 8 

c) 4, 5 and 8 

d) None 

 

4. If 𝐵 = [
2 1
1 2

] be a matrix where 𝐵 = 𝐴𝑇𝐴, then singular values of 𝐴 are- 

a) 1, 3  

b) 3, 2  

c) 1,√𝟑 

d) 3, √3 

5. What are the singular values of the matrix 𝐴 = [
1 1
0 1
1 0

]. 

a) 1 & 3 

b) 0,1 & 3 

c) 1 & √𝟑 

d) 0, 1 & √3 

 

6.  If 𝐵 = [
1 0 0
0 4 0
0 0 9

] be a matrix where 𝐵 = 𝐴𝑇𝐴, then singular values of 𝐴 are 

a) {1, 4, 9} 

b) {1, 4, 0} 

c) {𝟏, 𝟐, 𝟑} 

d) {0, 4, 9} 



CHAPTER-10 LINEAR PROGRAMMING PROBLEM(LPP) 

 

GENERAL LINEAR PROGRAMMING PROBLEM IN TWO VARIABLES: 

Find the values of 𝑥1 & 𝑥2 that optimize (either maximize or minimize) 

𝑧 = 𝑐1𝑥1 + 𝑐2𝑥2   [Linear Objective Function] 

Subject to Linear Constraints    𝑎11𝑥1 + 𝑎12𝑥2 (≤,≥ 𝑜𝑟 =)𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 (≤,≥ 𝑜𝑟 =)𝑏2 

      …………………………………………………. 

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 (≤,≥ 𝑜𝑟 =)𝑏𝑚 

And     𝑥1 ≥ 0, 𝑥2 ≥ 0 [Non-Negative Constraints] 

 

NOTE (1) A pair of values (𝑥1, 𝑥2) that satisfy all the constraints is called a Feasible Solution. 

The set of all feasible solutions determines a subset of 𝑥1𝑥2-plane called the feasible region. A 

feasible solution that optimizes the objective function is called an Optimal Solution. 

NOTE (2) The feasible region of an LPP has a boundary consisting of a finite number of 

straight line segments. If the feasible region can be enclosed in a sufficiently large circle, it is 

called Bounded; otherwise it is called Unbounded. 

 If the feasible region is empty (contains no points), then the constraints are Inconsistent 

and the LPP has no solution. 

Those boundary points of a feasible region that are intersections of two of the straight 

line boundary segments are called Extreme points (or Corner points). 

 

THEOREM:  If the feasible region of an LPP is non-empty and bounded, then the objective 

function attains both a maximum and a minimum value and these occur at extreme points of 

the feasible region. If the feasible region is Unbounded, then the objective function may or may 

not attain a maximum or minimum value; however, if it attains a maximum or minimum value, 

it does so at an extreme point. 

 

 

 

 

 

 

 



Example: Solve the following LPP by Graphical method- 

                                                  max 𝑧 = 𝑥1 + 3𝑥2  

subject to: 

2𝑥1 + 3𝑥2 ≤ 24 

𝑥1 − 𝑥2 ≤ 7 

𝑥2 ≤ 6 

                                                              𝑎𝑛𝑑 𝑥1, 𝑥2 ≥ 0  

Solution: In Fig, we have drawn the feasible region of this problem. 

 

Since the feasible region is bounded, the maximum value of 𝑧 is attained at one of the extreme 

points. The values of objective function at five extreme points are given in the following table: 

 

Extreme Points 

       (𝑥1, 𝑥2) 

O(0,0) A(0,6) B(3,6) C(9,2) D(7,0) 

𝑧 = 𝑥1 + 3𝑥2 
 

0 

 

18 

 

21 

 

15 

 

7 

From the Table, the maximum value of 𝑧 is 21 which is attained at 𝑥1 = 3 & 𝑥2 = 6. 

 

 

 

 

 

 

 

 



TRUE AND FALSE QUESTIONS 

State whether the following statements are True or False- 

1. In LPP, all variables are restricted to positive values only.    (F) 

2. In LPP, a non-linear objective function is to be optimized.    (F) 

3. The graphical method can be used to solve LPP with any No. of unknown variable.(F) 

4. One of the quickest ways to plot a constraint is to find the two points where the 

constraint crosses the axes, and draw a straight line between these points.            (T) 

5. No LPP with an unbounded feasible region has a solution.    (F) 

 

OBJECTIVE QUESTIONS 

1. The valid Objective Function for a LPP is- 

a) max (𝑥, 𝑦)  

b) min(𝑥2 + 𝑦2) 

c) 𝐦𝐢𝐧 (𝒙 + 𝒚 −
𝟏

𝟐
𝒛)      

d) None 

 

2. Which of the following constraints is not linear? 

a) 7𝑥 − 6𝑦 ≤ 45  

b) 𝑥 − 𝑦 + 𝑧 ≥ 25    

c) 𝒙𝒚 − 𝒚 = 𝟓  

d) 𝑥 −
1

3
𝑦 = 5 

3. In maximization problem, optimal solution occurring at corner point yields the 

a) Mean values of 𝑧 

b) Lowest value of 𝑧 

c) Mid values of 𝑧 

d) Highest value of 𝒛 

 

4. In linear programming, objective function and constraints are 

a) Quadratic and linear respectively 

b) Linear and quadratic respectively 

c) Both are quadratic 

d) Both are linear 

 

5. The feasible region 

a) Represents all values of each constraint 

b) May range over all positive or negative values of only one decision variable. 

c) Is an area bounded by the collective constraints and represents all 

permissible combinations of the decision variables 

d) Is defined by the objective function 

 

 



SOME IMPORTANT FORMULAE FROM CHAPTER-1 TO CHAPTER-4 

CHAPTER-2 

FORMULA FOR 𝟐 × 𝟐 MATRIX: 

The matrix  𝐴 = [
𝑎 𝑏
𝑐 𝑑

] is Invertible iff 𝑎𝑑 − 𝑏𝑐 ≠ 0 (𝑖. 𝑒. , |𝐴| ≠ 0) 

And   𝐴−1 =
1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

]. 

 

The quantity 𝑎𝑑 − 𝑏𝑐 is called the Determinant of 2 × 2 matrix 𝐴 = [
𝑎 𝑏
𝑐 𝑑

]. 

𝑖. 𝑒. , det(𝐴) = |𝐴| = |
𝑎 𝑏
𝑐 𝑑

| = 𝑎𝑑 − 𝑏𝑐. 

 

TRIANGULAR MATRICES: A matrix that is either Upper-triangular or Lower- triangular 

is called the Triangular Matrix. 

NOTE(1) The diagonal matrices are both Upper triangular and Lower triangular. 

NOTE(2) A triangular matrix is Invertible iff its diagonal entries are all non-zero. 

 

PROPERTIES OF TRIANGULAR MATRICES: 

(1) The transpose of a Lower triangular matrix is Upper triangular matrix and  

      The transpose of an Upper triangular matrix is Lower triangular matrix. 

 

(2) The product of Lower triangular matrices is Lower triangular matrix and 

The product of Upper triangular matrices is Upper triangular matrix. 

(3) The Inverse of an invertible Lower triangular matrix is Lower triangular matrix and 

The Inverse of an invertible Upper triangular matrix is Upper triangular matrix. 

INVERTIBILTY OF SYMMETRIC MATRICES: In general, a Symmetric matrix need not 

be Invertible. For example, a diagonal matrix with a zero on main diagonal is Symmetric but 

not Invertible. 

THEOREM: If 𝐴 is an invertible symmetric matrix, then  𝐴−1 is symmetric. 

NOTE: The products 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are always symmetric. 

DETERMINANT OF A TRIANGULAR MATRIX: If 𝐴 is an 𝑛 × 𝑛 Triangular matrix 

(Upper triangular, lower triangular or diagonal), then det (𝐴) is the product of entries on main 

diagonal of the matrix, that is,  

det(𝐴) = 𝑎11𝑎22 ………………𝑎𝑛𝑛 

THEOREM: Let 𝐴 be a square matrix. If 𝐴 has a row of zeroes or a column of zeroes, then 

det(𝐴) = 0. 

THEOREM: Let 𝐴 be a square matrix, then  det(𝐴) = det (𝐴𝑇). 

THEOREM: If 𝐴 be a square matrix with two proportional rows or two proportional columns,

 then   det(𝐴) = 0. 

 



BASIC PROPERTIES OF DETERMINANTS: 

(1) If 𝐴 is an 𝑛 × 𝑛  matrix and 𝑘 is any scalar, then det(𝑘𝐴) = 𝑘𝑛det (𝐴). 

(2) If 𝐴 and 𝐵 are square matrices of same size, then det(𝐴𝐵) = det(𝐴) . det (𝐵). 

DETERMINANT TEST FOR INVERTIBILTY (THEOREM) : A square matrix 𝐴 is 

Invertible iff det (𝐴) ≠ 0. 

NOTE: If a matrix 𝐴 is Invertible, then det(𝐴−1) =
1

det (𝐴)
 .  

 

  CHAPTER-3 

Vectors Whose Initial Point is Not at the Origin 

If 𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   denotes a vector in 2-space with initial point 𝑃1(𝑥1, 𝑦1) and terminal point 𝑃2(𝑥2, 𝑦2), 

then the components of this vector are given by 

𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1) 

Similarly, the components of a vector in 3-space that has initial point 𝑃1(𝑥1, 𝑦1, 𝑧1) and terminal 

point 𝑃2(𝑥2, 𝑦2, 𝑧2) are 

𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)      

 

Operations of Vectors on 𝑹𝒏    

If 𝐯 = (𝑣1,  𝑣2, …… . . , 𝑣𝑛) and 𝐰 = (𝑤1,  𝑤2, …… . . , 𝑤𝑛) are vectors in 𝑅𝑛, and if 𝑘 is any 

scalar, then 

 𝐯 + 𝐰 = (𝑣1 + 𝑤1,  𝑣2 + 𝑤2, …… . . , 𝑣𝑛 + 𝑤𝑛) 

 𝑘𝐯 = (𝑘𝑣1,  𝑘𝑣2, …… . . , 𝑘𝑣𝑛) 

 −𝐯 = (−𝑣1,  −𝑣2, …… . . , −𝑣𝑛) 

 𝐰 − 𝐯 = 𝐰 + (−𝐯) = (𝑤1 − 𝑣1,  𝑤2 − 𝑣2, …… . . ,  𝑤𝑛 − 𝑣𝑛) 

 

Norm of a Vector 

If 𝐯 = (𝑣1,  𝑣2, …… . . , 𝑣𝑛) is a vector in 𝑅𝑛, then the norm of 𝐯 (also called the length or the 

magnitude) is denoted by ‖𝐯‖, and is defined by the formula 

‖𝐯‖ = √𝑣1
𝟐 + 𝑣2

𝟐 + 𝑣3
𝟐 …… .+𝑣𝑛

𝟐 

   

 

 



Unit Vectors: A vector of norm 1 is called a unit vector. 

If v is any non-zero vector in 𝑅𝑛, then a unit vector in the same direction as v is defined by 

   𝐮 =
1

‖𝐯‖
𝐯  

This process to obtain a unit vector is called normalizing 𝐯. 

 

The Standard Unit Vectors: When a rectangular coordinate system is introduced in 

𝑅2 or 𝑅3, the unit vectors in the positive directions of the coordinate axes are called the standard 

unit vectors. 

In 𝑅2, these vectors are denoted by   i = (1,  0) &  j = (0,1) 

 and in 𝑅3 by  𝐢 = (1,  0,  0),   𝐣 = (0,  1,  0),   &      𝐤 = (0,  0,  1)  

 

DISTANCE IN 𝑹𝒏 : The distance between the points 𝑃1(𝑥1, 𝑦1) and 𝑃2(𝑥2, 𝑦2) in 2-space is 

𝑑 = ‖𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 

And the distance between the points 𝑃1(𝑥1, 𝑦1, 𝑧1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) in 3-space is 

𝑑 = ‖𝑃1𝑃2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ = √(𝑥2 − 𝑥1)

2 + (𝑦2 − 𝑦1)
2 + (𝑧2 − 𝑧1)

2 

 

COMPONENT FORM OF DOT PRODUCT: If 𝑢 = (𝑢1, 𝑢2, …… . . , 𝑢𝑛) and 𝑣 =

(𝑣1, 𝑣2, …… . . , 𝑣𝑛) are vectors in 𝑅𝑛, then the Dot Product (also called Euclidean Inner 

Product) of 𝑢 & 𝑣 is defined as 

𝑢. 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯……+ 𝑢𝑛𝑣𝑛 

The norm (or length) of a vector 𝑢 in 𝑅𝑛 is defined as 

‖𝑢‖ = √𝑢. 𝑢  

ORTHOGONAL VECTORS:  Two non-zero vectors 𝑢 &  𝑣 in 𝑅𝑛 are called Orthogonal or 

perpendicular (i.e., 𝜃 =
𝜋

2
) if 𝑢. 𝑣 = 0. 

A non-empty set of vectors in 𝑅𝑛 is called an Orthogonal Set if all pairs of distinct 

vectors in the set are Orthogonal. 

CROSS- PRODUCT OF VECTORS: If 𝑢 = (𝑢1, 𝑢2, 𝑢3) and 𝑣 = (𝑣1, 𝑣2, 𝑣3) are vectors in 

𝑅3, then the Cross- Product (also called Vector Product) of 𝑢 & 𝑣 is defined as 

𝑢 × 𝑣 = |
𝑖̂ 𝑗̂ 𝑘̂
𝑢1 𝑢2 𝑢3

𝑣1 𝑣2 𝑣3

| = 𝑖̂(𝑢2𝑣3 − 𝑢3𝑣2) − 𝑗̂(𝑢1𝑣3 − 𝑢3𝑣1) + 𝑘̂(𝑢1𝑣2 − 𝑢2𝑣1) 

NOTE: The vector 𝑢 × 𝑣 is Orthogonal to the vectors 𝑢 & 𝑣 both. 



CHAPTER-4 

LINEAR INDEPENDENCE: Let 𝑆 = {𝑣1, 𝑣2, …… . . , 𝑣𝑟} is a non-empty set of vectors in a 

vector space 𝑉. If the equation 𝑘1𝑣1 + 𝑘2𝑣2 + ⋯……+ 𝑘𝑟𝑣𝑟 = 0 has only trivial solution  

(i.e., 𝑘1 = 0, 𝑘2 = 0,………+ 𝑘𝑟 = 0 ), then 𝑆 is said to be Linearly Independent. 

If there are solutions in addition to trivial solution, then 𝑆 is said to be Linearly Dependent. 

NOTE:     If |𝐴| ≠ 0, then the vectors are Linearly Independent,     

    and if |𝐴| = 0, then the vectors are Linearly Dependent. 

BASIS FOR A VECTOR SPACE: If 𝑉 is any vector space and 𝑆 = {𝑣1, 𝑣2, …… . . , 𝑣𝑟} is a 

finite set of vectors in 𝑉, then 𝑆 is called a Basis for 𝑉 if the following two conditions hold: 

a. The set 𝑆 is Linearly Independent. (i.e., 𝑣1, 𝑣2, …… . . , 𝑣𝑟 are Linearly Independent. ) 

b. The set 𝑆 spans 𝑉. (i.e., every vector in 𝑉 can be expressed as a linear combination of 

𝑣1, 𝑣2, …… . . , 𝑣𝑟)  

THEOREM: All Bases for a finite-dimensional vector space have the same no. of vectors. 

DIMENSION OF VECTOR SPACE: The Dimension of a finite-dimensional vector space 𝑉 

is defined to be the no. of vectors in a basis for 𝑉 and is denoted by dim (𝑉). In addition the 

zero vector space is defined to have dimension zero. 

NOTE:   dim(𝑅𝑛) = 𝑛 , the standard basis has 𝑛 vectors. 

dim(𝑃𝑛) = 𝑛 + 1 , the standard basis has 𝑛 + 1 vectors. 

dim(𝑀𝑚𝑛) = 𝑚𝑛 , the standard basis has 𝑚𝑛 vectors. 

 

DIMENSION OF ROW SPACE: The dimension of row space is the no. of basis vectors for 

the row space of matrix 𝐴, thus the dimension of row space is the no. of non-zero rows in 

Echelon form of 𝐴. 

 

THEOREM: The row space and column space of a matrix 𝐴 have same dimension. 

 

RANK AND NULLITY OF A MATRIX: The common dimension of the row space and 

column space of a matrix 𝐴 is called the Rank of 𝐴 and is denoted by 𝑟𝑎𝑛𝑘(𝐴); the dimension 

of the null space of 𝐴 is called the Nullity of 𝐴 and is denoted by 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴). 

 

NOTE (1) The rank of a matrix 𝐴 can be interpreted as the no. of leading 1’s in any row echelon 

form of the matrix 𝐴. 

NOTE (2) If 𝐴 is any 𝑚 × 𝑛 matrix, then 𝑟𝑎𝑛𝑘(𝐴) ≤ min (𝑚, 𝑛). 

 

DIMENSION THEOREM FOR MATRICES: 

 If 𝐴 is a matrix with 𝑛 columns, then  𝑟𝑎𝑛𝑘(𝐴) + 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = 𝑛. 

 

THEOREM: If 𝐴 is an 𝑚 × 𝑛 matrix, then 

(i) 𝑟𝑎𝑛𝑘(𝐴) = the no. of leading variables in the general solution of 𝐴𝑋 = 0. 
(ii) 𝑛𝑢𝑙𝑙𝑖𝑡𝑦(𝐴) = the no. of parameters in the general solution of 𝐴𝑋 = 0. 

 

THEOREM: If 𝐴 is any matrix, then 𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐴𝑇). 

 


